INORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 747-749

Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate

Volker Zabel, Matthias Schneider, Martin Weinberger and Wolfgang Gessner

Institut für Angewandte Chemie Berlin-Adlershof, e.V., Rudower Chaussee 5, D-12484, Germany. E-mail: zabel@kristall.aca.fta-berlin.de
(Received 27 July 1992; accepted 6 November 1992)

Abstract

The Al atoms are six-coordinate and exist as monomeric $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ anions in the title compound, $\mathrm{Na} 9\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}(\mathrm{OH})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The Na^{+}cations also show octahedral coordination geometry and are coordinated by OH^{-}ions and water molecules; six Na^{+}cations are coordinated by five hydroxyl groups and one water molecule, while the other three are coordinated by four hydroxyl groups and two water molecules. These NaO_{6} octahedra are linked through common edges, incorporating the AlO_{6} octahedra, to yield a three-dimensional network.

Comment

The title structure displays a marked translational pseudosymmetry; most atoms are related in pairs by a translation of $1 / 2$ in the z direction. These are All and Al 2 , $\mathrm{Nal}-\mathrm{Na} 4$ and $\mathrm{Na} 5-\mathrm{Na} 8, \mathrm{O} 1-\mathrm{O} 6$ and $\mathrm{O} 7-\mathrm{O} 12, \mathrm{Ol} 6-$ O 17 and $\mathrm{O} 19-\mathrm{O} 20$. In the pairs $\mathrm{O} 13, \mathrm{O} 14$ and O 18 , O 21 , this translational relationship is poor and is broken by Na 9 . For O 15 , the symmetry operator $2-x$, $1-y, 1-z$ generates a position close to the one which would have been generated by $z+1 / 2$. However, there is a hole at $z+1 / 2$ corresponding to Na 9 .

The Al atoms have octahedral coordination geometry and exist as monomeric $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ anions. With the exception of the title compound and a thermal dehydration product (Geßner, Weinberger, Müller, Ni \& Khaljapina, 1987), no other hydroxoaluminate in the system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ has this octahedral coordination geometry. The Na^{+}cations are six-coordinate by OH^{-} ions and water molecules, forming distorted octahedra. Six Na^{+}cations are coordinated by five hydroxyl groups and one water molecule, while three are coordinated by four hydroxyl groups and two water molecules. They are linked through common edges, incorporating the AlO_{6} octahedra, to yield a three-dimensional network.

The $\mathrm{Na}-\mathrm{O}$ distances lie in a wide range [2.290 (1)2.644 (1) \AA], as do the $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ angles [67.19(4)-
$113.78(5)^{\circ}$ and $159.23(5)-178.48(6)^{\circ}$. (The latter are available as supplementary material.) The $\mathrm{Al}-\mathrm{O}$ distances range from 1.887 (1) to 2.004 (1) \AA and can be compared with those in barium aluminate hydrate (Cruickshank, Dent Glasser \& Howie, 1985) of 1.887 (3)-1.919(6) \AA and those in $\mathrm{Ca}_{2}\left[\mathrm{Al}(\mathrm{OH})_{6}\right] \mathrm{Cl}$.$2 \mathrm{H}_{2} \mathrm{O}$ (Terzis, Filippakis, Kuzel \& Burzlaff, 1987) of 1.903 (2)-1.918 (2) A. Barium aluminate hydrate contains AlO_{6} octahedra and AlO_{4} tetrahedra, and is thus difficult to compare otherwise with the title structure. In $\mathrm{Ca}_{2}\left[\mathrm{Al}(\mathrm{OH})_{6}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$, structural motifs similar to those in the title structure are found. Both structures display cationic and anionic layers. The cationic layers are composed of Ca^{2+} and Al^{3+} or Na^{+}and Al^{3+}, while the anionic layers are composed of OH^{-}or OH^{-}and water molecules for the calcium aluminate and the title structure, respectively. In the Ca compound, there is an interlayer of $\left(\mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}\right)^{-}$between the anionic OH^{-}layers. In $\mathrm{Na}_{9}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}(\mathrm{OH})_{3} .6 \mathrm{H}_{2} \mathrm{O}$, the cationic and anionic layers alternate parallel to the $a b$ plane. The cationic layers have approximate positions $z=0.13,0.38,0.62$ and 0.87 while the anionic layers are positioned in between, at approximately $z=0.0,0.25,0.50$ and 0.75 . The water molecules are incorporated into the anionic OH^{-}layers through water-hydroxyl and water-water hydrogen bonding.

All H atoms were located and the hydrogen-bond parameters are shown in Table 3. Only eight of the 15 hydroxyl ions (atoms $\mathrm{O} 1-\mathrm{Ol} 5$) are involved in hydrogen bonds, three of them as donors. Two of these donors represent intramolecular hydrogen bonds. However, these three bonds are weak with relatively long H. O distances. The hydroxyl ions O 13 and O 14 are not involved in any primary cationic coordination;

Fig. 1. An ORTEP plot (Johnson, 1976) of the two symmetry-related moieties in the unit cell, approximately along [100]. Depicted are the monomeric AlO_{6} octahedra connected by NaO_{6} octahedra. The thin lines show the $\mathrm{Na}-\mathrm{O}$ contacts, while the dotted lines indicate the hydrogen bonds.
they are lone hydroxyls involved in hydrogen bonding only. All six water molecules (atoms O16-O21) are involved in hydrogen bonding through both H atoms. Only those involving H161 and H171 are weak, and the hydrogen bond involving H191 is very weak. The hydrogen-bond parameters involving H172 and H212, with the shortest $\mathrm{H} \cdots \mathrm{O}$ distances, have to be regarded with caution. These atoms have the highest displacement parameters of the H atoms and, therefore, their positions are not very reliable.

Experimental

Single crystals of $\mathrm{Na}_{9}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}(\mathrm{OH})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were obtained by slow crystallization at 318 K from a concentrated sodium aluminate solution ($42 \% \mathrm{NaO}, 1.4 \% \mathrm{Al}_{2} \mathrm{O}_{3}$). After filtration, the hygroscopic crystals were squeezed between filter paper and immediately transferred into dried hexane and mounted in glass capillaries.

Crystal data

$\mathrm{Na}_{9}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}(\mathrm{OH})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=624.07$
Triclinic
$P \overline{1}$
$a=8.694$ (1) \AA
$b=11.344$ (2) \AA
$c=11.636(3) \AA$
$\alpha=74.29$ (2) ${ }^{\circ}$
$\beta=87.43$ (2) ${ }^{\circ}$
$\gamma=70.66(2)^{\circ}$
$V=1041.1(4) \AA^{3}$
$Z=2$
$D_{x}=1.991 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius Turbo-CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
6434 measured reflections
6068 independent reflections
4202 observed reflections $[F>2 \sigma(F)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0320$
$w R\left(F^{2}\right)=0.0823$
$S=1.052$
6068 reflections
398 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0346 P)^{2}\right.$ $+0.2034 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.016$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9-15^{\circ}$
$\mu=0.423 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slightly opaque block
$0.35 \times 0.15 \times 0.15 \mathrm{~mm}$ Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.0158 \\
& \theta_{\text {max }}=34.92^{\circ} \\
& h=0 \rightarrow 12 \\
& k=-17 \rightarrow 15 \\
& l=-16 \rightarrow 16 \\
& 2 \text { standard reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.567 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.350 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0052 (5)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {iso }}$ for H atoms, $U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$ for all others.				
	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
All	0.40896 (5)	0.27366 (4)	0.12585 (3)	0.01062 (9)
Al2	0.40252 (5)	0.27516 (4)	0.62321 (3)	0.01006 (9)
NaI	0.41589 (8)	0.03214 (6)	0.362 .36 (5)	0.02004 (14)
Na 2	0.60844 (8)	0.22505 (6)	0.37913 (5)	0.02021 (14)
Na 3	0.20520 (8)	0.32243 (6)	0.36867 (5)	0.01869 (14)
Na 4	0.42535 (8)	0.50918 (6)	0.37142 (5)	0.01839 (14)
Na 5	0.40470 (8)	0.03347 (6)	0.86685 (5)	0.01942 (14)
Na6	0.59262 (8)	0.22235 (6)	0.88010 (5)	0.01904 (13)
Na 7	0.20119 (8)	0.31748 (6)	0.86914 (5)	0.01913 (14)
Na 8	0.40161 (8)	0.51492 (6)	0.88042 (5)	0.01850 (14)
Na 9	1.00374 (8)	0.39908 (6)	0.62102 (5)	0.02063 (15)
Ol	0.25708 (14)	0.21133 (11)	0.22234 (9)	0.0159 (2)
02	0.57637 (14)	0.13393 (10)	0.22825 (9)	0.0143 (2)
O3	0.56192 (1.3)	0.33185 (10)	0.02530 (9)	0.0140 (2)
04	0.24111 (14)	0.42138 (11)	0.02545 (9)	0.0164 (2)
O5	0.40846 (13)	0.38586 (10)	0.23016 (9)	0.0139 (2)
O6	0.39831 (13)	0.16507 (10)	0.01816 (9)	0.0140 (2)
07	0.23550 (13)	0.22215 (11)	0.71534 (9)	0.0141 (2)
O8	0.56018 (14)	0.13442 (10)	0.73046 (9)	0.0142 (2)
O9	0.56511 (13)	0.33086 (10)	0.53080 (9)	0.0139 (2)
010	0.23736 (13)	0.42556 (10)	0.51320 (9)	0.0140 (2)
$\mathrm{Ol1}$	0.39583 (14)	0.38360 (11)	0.72978 (9)	0.0137 (2)
O 12	0.39822 (13)	0.16973 (10)	0.51613 (9)	0.0141 (2)
013	0.9360 (2)	0.1325 (2)	0.12919 (15)	0.0418 (4)
O14	0.9081 (2)	0.1158 (2)	0.66693 (14)	0.0445 (4)
015	0.9728 (2)	0.47591 (12)	0.25194 (11)	0.0247 (3)
016	0.8007 (2)	0.0253 (2)	0.00535 (14)	0.0331 (3)
017	0.8092 (2)	0.3258 (2)	0.27004 (13)	0.0317 (3)
018	0.9864 (2)	0.2692 (2)	0.48690 (15)	0.0461 (4)
O19	0.7970 (2)	0.02625 (15)	0.51161 (14)	0.0329 (3)
O 20	0.8057 (2)	0.31625 (15)	0.75703 (13)	0.0290 (3)
O21	0.9520 (2)	0.32893 (14)	0.96482 (12)	0.0279 (3)
H1	0.186 (3)	0.218 (3)	0.192 (2)	0.051 (8)
H2	0.662 (3)	0.132 (2)	0.207 (2)	0.040 (7)
H3	0.648 (3)	0.292 (2)	0.052 (2)	0.036 (6)
H4	0.165 (3)	0.408 (2)	0.033 (2)	0.028 (6)
H5	0.347 (3)	0.444 (2)	0.199 (2)	0.023 (6)
H6	0.340 (3)	0.134 (2)	0.050 (2)	0.033 (6)
H7	0.202 (3)	0.182 (2)	0.693 (2)	0.023 (6)
H8	0.645 (3)	0.125 (2)	0.716 (2)	0.044 (7)
H9	0.649 (3)	0.291 (2)	0.561 (2)	0.032 (6)
H10	0.238 (3)	0.484 (2)	0.533 (2)	0.027 (6)
H11	0.324 (3)	0.434 (2)	0.714 (2)	0.031 (6)
H12	0.333 (3)	0.140 (2)	0.535 (2)	0.037 (7)
H13	1.002 (3)	0.102 (3)	0.164 (2)	0.045 (9)
H14	0.993 (3)	0.075 (2)	0.681 (2)	0.029 (7)
H15	1.018 (3)	0.475 (2)	0.201 (2)	0.037 (7)
H161	0.864 (3)	-0.013 (3)	-0.032 (2)	0.057 (9)
H162	0.850 (3)	0.050 (3)	0.055 (2)	0.053 (8)
H171	0.841 (3)	0.280 (3)	0.237 (2)	0.050 (9)
H172	0.885 (4)	0.389 (3)	0.258 (3)	0.097 (11)
H181	0.973 (3)	0.218 (3)	0.543 (2)	0.056 (8)
H182	0.934 (3)	0.271 (3)	0.433 (3)	0.066 (9)
H191	0.861 (3)	-0.023 (3)	0.489 (2)	0.061 (9)
H192	0.841 (3)	0.047 (3)	0.570 (2)	0.061 (8)
H201	0.851 (3)	0.312 (2)	0.816 (2)	0.044 (7)
H202	0.844 (3)	0.251 (2)	0.737 (2)	0.042 (7)
H211	0.887 (3)	0.398 (2)	0.970 (2)	0.041 (7)
H212	0.947 (4)	0.262 (3)	1.028 (3)	0.082 (10)

Table 2. Selected geometric parameters (\AA)

All-OI	1.8867 (12)	$\mathrm{Na} 4-\mathrm{O} 5$	2.4664 (13)
All-O3	1.8966 (12)	$\mathrm{Na4-O20}{ }^{\text {ii1 }}$	2.494 (2)
All-O2	1.9119 (13)	$\mathrm{Na} 4-\mathrm{O} 10$	2.4961 (13)
All-O4	1.9430 (13)	$\mathrm{Na5}-08$	2.3466 (14)
All-O5	1.9814 (12)	$\mathrm{Na} 5-\mathrm{O} 2{ }^{1}$	2.4025 (13)
All-O6	2.0044 (12)	$\mathrm{Na5}-\mathrm{Ob}^{\text {i }}$	2.4114 (14)
$\mathrm{Al2-08}$	1.9000 (13)	$\mathrm{Na5}-\mathrm{O} 16{ }^{1}$	2.421 (2)
A12-09	1.9082 (12)	$\mathrm{Na5}-\mathrm{O} 7$	2.4407 (15)
$\mathrm{Al2}-\mathrm{O} 7$	1.9259 (12)	$\mathrm{Na5}-\mathrm{O6}^{11}$	2.5867 (13)
Al2-O12	1.9558 (12)	$\mathrm{Na6-08}$	2.2973 (13)

Al2-O11	1.9562 (12)	$\mathrm{Na} 6-\mathrm{O} 3^{1 /}$	2.3119 (13)
$\mathrm{Al} 2-\mathrm{O} 10$	1.9927 (13)	$\mathrm{Na} 6-06{ }^{\text {² }}$	2.4031 (14)
$\mathrm{NaI}-\mathrm{Ol}$	2.2896 (15)	$\mathrm{Na} 6-\mathrm{O} 11$	2.4074 (15)
$\mathrm{NaI}-\mathrm{OP}^{1}$	2.3673 (13)	$\mathrm{Na} 6-016^{\text {i }}$	2.488 (2)
$\mathrm{Na} 1-\mathrm{O} 2$	2.3687 (14)	$\mathrm{Na} 6-\mathrm{O} 20$	2.619 (2)
$\mathrm{NaI}-\mathrm{Ol2}{ }^{1}$	2.4197 (14)	$\mathrm{Na} 7-07$	2.2909 (13)
$\mathrm{NaI}-\mathrm{Ol} 9^{1}$	2.461 (2)	$\mathrm{Na} 7-\mathrm{Ob}^{\text {iv }}$	2.3692 (14)
$\mathrm{Na} 1-\mathrm{Ol2}$	2.6438 (13)	$\mathrm{Na} 7-021^{\text {ii }}$	2.3715 (15)
$\mathrm{Na} 2-\mathrm{O} 2$	2.3337 (13)	$\mathrm{Na} 7-015^{\text {iii }}$	2.413 (2)
$\mathrm{Na} 2-\mathrm{O} 9$	2.3421 (13)	Na7-O11	2.4479 (13)
$\mathrm{Na} 2-\mathrm{O} 5$	2.4110 (15)	$\mathrm{Na} 7-\mathrm{O}^{\text {iv }}$	2.5113 (14)
$\mathrm{Na} 2-\mathrm{O} 19$	2.459 (2)	$\mathrm{Na} 8-\mathrm{O}^{\text {iv }}$	2.3442 (14)
$\mathrm{Na} 2-\mathrm{O} 12$	2.4964 (14)	$\mathrm{Na} 8-\mathrm{O}^{\text {iV }}$	2.3918 (14)
$\mathrm{Na} 2-\mathrm{O} 17$	2.510 (2)	$\mathrm{Na} 8-\mathrm{O}^{\text {i' }}$	2.3988 (13)
$\mathrm{Na} 3-\mathrm{Ol}$	2.3255 (13)	$\mathrm{Na} 8-\mathrm{OS}^{\text {i'1 }}$	2.4301 (13)
$\mathrm{Na} 3-\mathrm{O} 12$	2.3418 (14)	$\mathrm{Na} 8-\mathrm{O} 17{ }^{11 \mathrm{i}}$	2.464 (2)
$\mathrm{Na} 3-\mathrm{O} 15^{\text {ii }}$	2.365 (2)	$\mathrm{Na} 8-\mathrm{O} 11$	2.6012 (13)
$\mathrm{Na3-O10}$	2.3663 (13)	Na9-O15	2.3648 (15)
$\mathrm{Na} 3-\mathrm{O} 18{ }^{\text {ii }}$	2.440 (2)	$\mathrm{Na} 9-\mathrm{O7}^{\text {V1 }}$	2.3705 (14)
$\mathrm{Na} 3-\mathrm{O} 5$	2.4894 (13)	$\mathrm{Na} 9-\mathrm{O} 10^{\text {vi }}$	2.4002 (13)
$\mathrm{Na} 4-\mathrm{O} 9$	2.3559 (14)	Na9-018	2.458 (2)
$\mathrm{Na} 4-\mathrm{Ol1}{ }^{\text {iid }}$	2.3656 (14)	$\mathrm{Na} 9-\mathrm{O} 20$	2.525 (2)
$\mathrm{Na} 4-\mathrm{O} 9^{\text {iii }}$	2.4126 (13)	$\mathrm{Na} 9-\mathrm{O} 10^{111}$	2.5767 (15)

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x-1, y, z$; (iii) $1-x, 1-y, 1-z$; (iv) $x, y, 1+z ;(\mathrm{v}) 2-x, 1-y, 1-z ;(\mathrm{vi}) 1+x, y, z$.

Table 3. Hydrogen-bonding geometry ($\left(\mathrm{A}^{\circ}{ }^{\circ}\right)$

D-H. \cdot A	D-H	H . . A	D. . A	$D-\mathrm{H} \cdots \cdot A$
O5-H5 . O 4	0.71 (2)	2.37 (2)	2.712 (2)	112 (2)
O6- $\mathrm{H} 6 \cdots \mathrm{O}$	0.74 (2)	2.39 (2)	2.723 (2)	109 (2)
O8-H8. . O14	0.72 (2)	2.31 (2)	3.033 (2)	174 (3)
O16-H161 . . O13 ${ }^{1}$	0.77 (3)	2.29 (3)	3.062 (2)	176 (3)
O16-H162.. O13	0.89 (3)	1.77 (3)	2.643 (2)	167 (2)
O17-H171...O13	0.71 (3)	2.27 (3)	2.982 (3)	179 (3)
O17-H172...O15	1.10 (4)	1.42 (4)	2.520 (2)	174 (3)
O18-H181.. O14	0.78 (3)	1.79 (3)	2.562 (2)	171 (3)
O18-H182.. O 17	0.78 (3)	2.07 (3)	2.823 (2)	163 (3)
O19-H191...O18 ${ }^{11}$	0.74 (3)	2.61 (3)	3.251 (3)	146 (3)
O19-H192...O14	0.91 (3)	1.75 (3)	2.652 (2)	170 (3)
O20-H201 . O 21	0.79 (2)	2.06 (3)	2.841 (2)	172 (2)
O20-H202 . O 14	0.80 (2)	1.84 (3)	2.632 (2)	170 (2)
$\mathrm{O} 21-\mathrm{H} 211 \cdots \mathrm{O} 4^{\text {iii }}$	0.82 (2)	2.00 (2)	2.804 (2)	170 (2)
$\mathrm{O} 21-\mathrm{H} 212 \ldots \mathrm{Ol} 3^{\text {iv }}$	0.92 (3)	1.64 (3)	2.553 (2)	173 (3)
Symmetry codes: (i) $2-x,-y,-z$; (ii) $2-x,-y, 1-z$; (iii) $1-x, 1-$ $y, 1-z$; (iv) $x, y, 1+z$.				

Several attempts at data collection were undertaken, as the intensities of the standard reflections showed that the crystals decayed rapidly. One crystal, however, showed no decay. The solution of the structure was not straightforward; many reflections with odd l showed a marked weakness. It was difficult to recognize structural moieties within the proposed solutions. All but one of the proposed solutions failed to refine to a reasonable R value by least-squares procedures and consecutive difference Fourier syntheses. After the true solution was established, several data sets collected on decaying crystals were refined to R values of between 4.4 and 9.6%, after proper correction for the decay. These refinements were performed independently of each other to check the functionality of the O atoms (i.e. hydroxyl ion or water molecule). All gave the same indications and all H atoms were found in all structures, some with less reliability. This serves as confirmation of the functionality of the O atoms and that this phase is the main product of the synthesis. More chemical details will be published elsewhere (Weinberger, Schneider, Zabel, Müller \& Geßner, 1996).

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure:

SHELXL93 (Sheldrick, 1993); Xtal3.2 (Hall \& Stewart, 1992). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: JZ1084). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Cruickshank, M. C., Dent Glasser, L. S. \& Howie, R. A. (1985). Acta Cryst. C41, 159-161.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Geßner, W., Weinberger, M., Müller, D., Ni, L. P. \& Khaljapina, O. B. (1987). Z. Anorg. Allg. Chem. 547, 27-44.

Hall, S. R. \& Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1990). Acla Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Terzis, A., Filippakis, S., Kuzel, H.-J. \& Burzlaff, H. (1987). Z. Kristallogr. 181, 29-34.
Weinberger, M., Schneider, M., Zabel, V., Müller, D. \& Geßner, W. (1996). Z. Anorg. Allg. Chem. In preparation.

Acta Cryst. (1996). C52, 749-753

A New Synthetic Fluoride Phosphate of Mixed-Valence Iron:

Gerlinde Frenzen, ${ }^{a}$ Olga V. Yakubovich ${ }^{b}$ and Oleg K. Mel'nikov ${ }^{b}$
${ }^{a}$ FB Biologie/Chemie, University of Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany, and ${ }^{b}$ Department of Crystallography and Crystal Chemistry, Geological Faculty, Lomonossov University, Moscow,
Russia. E-mail: frenzen@fkc-wsl.chemie.uni-kassel.de

(Received 14 August 1995; accepted 13 November 1995)

Abstract

The title compound, octacaesium pentadecairon decafluoride dodecaphosphate, was prepared by hydrothermal methods. The structure contains three types of Fe

(C) 1996 International Union of Crystallography

Printed in Great Britain - all rights reserved

